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Abstract

Monocular depth estimation is critical for 3D reasoning of a scene. While inferring
from 2D to 3D is an ill-posed problem, it is challenging to recover the depth
of a scene given the scarcity of depth supervisions. In this project, we aim to
investigate the feasibility of using large foundation models, such as Contrastive
Language-Image Pre-training (CLIP) [21] and Segment Anything (SAM) [15], for
depth estimation in computer vision. Inspired by [35], we first formulate depth
estimation as a distance classification task so that distance can be inferred from
CLIP with semantic language tokens, which serves as the initial depth prediction.
We then incorporate adapter networks to study whether these refinement modules
can further improve the CLIP predictions, including CLIP-Adapter [7] and the
proposed Multi-Scale Adapter (MSA). In addition, we investigate the efficacy of
SAM for depth estimation by integrating its output into the multi-scale adapter. We
conduct thorough experiments and ablation studies under both self-supervised and
supervised settings with the NYU-Depth v2 Dataset [25]. Experimental results sug-
gest that, while showing promising performance on classification and segmentation
tasks, current visual foundation models still suffer from 2D-to-3D reasoning and
fail to address the challenge of depth estimation in computer vision.

1 Introduction

Depth estimation from a single RGB image is a fundamental task in computer vision with applications
in autonomous driving [29, 33, 32], robotics [18, 10], and augmented reality [14, 3]. Accurate depth
estimation enables a range of important functionalities, such as obstacle detection [17, 31], scene
understanding [2, 12], and object tracking [13]. Traditional approaches for depth estimation rely
on supervised learning techniques that require large amounts of depth-labeled data, which can be
expensive and time-consuming to acquire. To address this challenge, recent advancements in large-
scale pre-trained models have shown promising results in various computer vision tasks. One such
model is Contrastive Language-Image Pre-training (CLIP) introduced by Radford et al. [21]. CLIP
is a powerful foundation model that has been pre-trained on a large corpus of text and image pairs.
It learns to associate images and their textual descriptions, enabling it to understand the semantic
relationship between the two modalities.

Moreover, while CLIP has been successfully applied to various vision tasks, its utilization has
primarily focused on high-level visual recognition tasks. The potential of leveraging its pre-trained
semantic language knowledge for quantitative vision tasks, such as depth estimation, remains largely
unexplored. Monocular depth estimation plays a crucial role in various industrial applications,
including monocular 3D object detection and point cloud reconstruction from images. Typically, this
task requires dense depth labels to train a network to extract semantic relationships within an image
and regress pixel-wise depth values. However, training networks from scratch using dense labels
can be inefficient for deployment due to the high data collection and annotation cost, particularly for
large-scale datasets like NYU Depth Dataset V2 [25] and KITTI [8].
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Figure 1: This project aims at investigating the efficacy of foundation models for depth estimation,
where CLIP is adopted to generate an initial depth prediction, and various adapter networks are
leveraged to refine the depth prediction. Segmentation from SAM is also integrated into the adapter
design as a prior information.

Some existing unsupervised methods address this challenge by incorporating additional data, such
as single-view videos [16] to capture time consistency or 3D priors for improved spatial modeling.
However, these approaches still come with their own limitations and requirements. Therefore, we
pose the question: Is it possible to prevent the costs associated with training models and collecting
data by leveraging the semantic language knowledge learned by CLIP? In our research, we aim to
explore whether the semantic language knowledge acquired by CLIP can be leveraged to alleviate the
challenges of monocular depth estimation. By utilizing the semantic understanding encoded within
CLIP, we aim to analyze whether CLIP is helpful for depth estimation and can reduce the dependence
on extensive data collection and expensive model training and pave the way for a more efficient and
cost-effective approach to this task.

This project investigates the feasibility of leveraging CLIP for depth estimation from monocular
RGB images. The pretrained visual encoder of CLIP is designed to encode images into a feature
map before applying a pooling layer, where the feature map retains valuable semantic details at
each location and allows to capture local visual information. Our approach exploits this property by
associating each spot on the feature map with a depth approximation based on its response to semantic
language tokens. By doing so, we leverage the strengths of CLIP in understanding the semantic
relationship between images and text, facilitating depth estimation without requiring a large amount
of depth-labeled data. Through extensive experimentation and evaluation of benchmark datasets, we
aim to analyze the effectiveness of foundation models, including CLIP and SAM, on depth estimation
tasks. Our contributions lie in thorough experiments and ablation studies to conclude that CLIP and
SAM are not very helpful for depth estimation tasks. This highlights the need of foundation models
that can really capture 2D-to-3D information and would be insightful for the community.

2 Related Work

Deep learning-based depth estimation is a computer vision task that involves predicting the depth
information of a scene from an input image or a sequence of images. This technique finds applications
in diverse fields such as robotics, autonomous driving, augmented reality, and 3D reconstruction. In
this section, we provide an overview of the key approaches and advancements in the field of deep
learning-based depth estimation, including recent advancements related to CLIP [21].

2.1 Supervised and Unsupervised Learning Monocular Depth Estimation

Supervised learning-based methods have made remarkable strides in depth estimation since the rise of
deep learning. In 2014, Eigen et al. introduced one of the pioneering deep learning models for depth
estimation, utilizing a convolutional neural network (CNN) to predict depth from individual images.
They proposed Depth_eigen [4], a multi-scale deep network that effectively makes a coarse global
prediction based on the entire image, and another that refines this prediction locally, resulting in
precise depth maps from a single image. However, supervised learning methods require a large amount
of accurately labeled depth data for training. This labeling process can be time-consuming, expensive,
and requires expert knowledge. In addition, supervised learning models exhibit limited generalization
capability, often struggling to extend their performance to unseen or novel environments and objects.
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Since they heavily rely on the patterns and information present in the training dataset. As a result, the
model’s performance may degrade when faced with data that significantly differs from the training
distribution, leading to inaccurate depth predictions.

To overcome this challenge, researchers have explored unsupervised learning approaches for depth
estimation. In 2017, Zhou et al. introduced a self-supervised learning method [37] simultaneously
training depth and camera pose estimation models, which utilized a Depth CNN to generate depth
maps and a Pose CNN to estimate camera poses. The two models are trained jointly by minimizing
the reconstruction error obtained from the generated depth maps and the pose estimation. This
self-supervised framework enables the models to learn depth cues and camera poses without requiring
explicit depth annotations. Also, the models are more likely to generalize well to unseen or novel
environments than supervised learning-based models.

2.2 Semantic Information and Depth Estimation

Semantic information has been considered to improve the performance of depth estima-
tion.Segmentation can help identify object boundaries, which are important cues for depth estimation
because depth discontinuities often occur at object boundaries, and understanding these boundaries
can help to improve the accuracy of depth predictions. Moreover, segmentation provides priors and
constraints for depth estimation. The same object category often exhibits consistent depth characteris-
tics. For example, knowing that a certain region corresponds to a road or a sky can help constrain the
depth range for that area. By incorporating such priors and constraints, depth estimation models can
regularize their predictions and produce more plausible depth maps. Therefore, many researchers
focus on fusing semantic information into the original depth prediction model to improve depth
estimation. In 2021, Zhou et al. proposed DIFFNet [36] based on the well-developed segmentation
model HRNet [26, 28, 34], using semantic information to help improve depth estimation.

2.3 CLIP and Depth Estimation

Recently, the Contrastive Language-Image Pretraining (CLIP) [21] model has gained attention in the
computer vision community. Radford et al. developed CLIP as a powerful vision-and-language model
that learns to understand images and their associated textual descriptions in 2021. Although CLIP is
primarily designed for tasks like image classification and retrieval, its pre-training framework has
shown potential for transfer learning to other vision tasks, including depth estimation. Researchers
have started exploring the application of CLIP for depth estimation by leveraging its cross-modal
understanding capabilities. By conditioning the CLIP model on depth-related textual prompts, it
becomes possible to infer depth information from images. In 2022, Zhang et al. proposed DepthCLIP
[35], which transforms the depth value regression task into a distance classification task that can be
handled by CLIP. Instead of requiring precise depth values (e.g., "The object is 5 meters away"),
DepthCLIP makes the depth estimation into a classification problem by asking CLIP to predict
whether an object is close or far from the viewer (e.g., giant, close, far, etc.). This methodology
enables us to leverage the power of the CLIP model while reducing the need for large amounts of
depth-supervised data.

However, the current performance of DepthCLIP is unsatisfactory. The model’s accuracy remains
low when relying solely on pre-trained CLIP without any fine-tuning or additional supervised data.
This raises doubts about the suitability of CLIP for the depth estimation problem. Therefore, in this
project, our goal is to introduce a different adaptor that provides supplementary information, such as
semantic information using SAM [15], and fuse it with CLIP features. We aim to investigate whether
this approach can improve the accuracy of the model. Ultimately, we hope to determine whether
CLIP can be effectively applied to depth estimation tasks.

3 Preliminaries

3.1 Large Foundation Models

Large foundation models have revolutionized the fields of computer vision and natural language
processing (NLP) in recent years and enabled significant advancements in various applications. For
example, Contrastive Language-Image Pre-training (CLIP) [21] leverages 400M image-text pairs to
learn generalized representations, having garnered considerable attention due to its transferability to
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various downstream tasks and datasets. CLIP employs an image encoder to capture visual patterns
and semantic information and demonstrates a remarkable ability to perform tasks such as image
classification [19], object detection [27], and visual question answering [5, 24] by combining this
visual understanding with its textual knowledge. On the other hand, Segment Anything (SAM) [15]
is a recent foundation model that harnesses a large segmentation dataset, SA-1B, with interactive
prompts, to generate segmentation for any given images. With these foundation models, there has
been multiple research to study whether we can really exploit the power of them and reduce the cost
and complexity of data collection for specific downstream domains and tasks. Our project aims to
investigate the efficacy of large foundation models for the depth estimation task in computer vision.

3.2 Adapter Networks

Adapters serve as small and lightweight modules that enable the integration of new capabilities into
existing pretrained foundation models without requiring extensive retraining or modifying of the
parameters. This provides an efficient modular extension of large foundation models. In other words,
to address a specific downstream task, people can harness the power of foundation models and only
train a relatively lightweight adapter with domain-specific data. With the advent of foundation models,
there have been several studies about adapter networks. A pioneer work is the CLIP-adapter [7] that
utilizes a two-layer MLP module to learn an adaptation for image and text embedding respectively.
While showing promising improvement in image recognition tasks, there is no work studying whether
this invention is applicable to the depth estimation task in computer vision. Motivated by this, we
conduct thorough experiments and ablations under both self-supervised and supervised settings
on adapter networks for depth estimation, where the depth generated by CLIP serves as the initial
prediction and the adapters act as refinement modules. In addition to CLIP-adapter [7], we further
propose a multi-scale adapter (MSA) that combines multi-scale features from different layers of CLIP
to capture coarse-to-fine information from the scene and fuse local information with the high-level
features for global context and semantics. We also incorporate the segmentation from the recent
advent of SAM to MSA and study its efficacy.

3.3 CLIP-based Depth Estimation

CLIP [21] consists of an image encoder V E(·) and a text encoder TE(·), which extracts visual and
text encodings respectively. CLIP-based depth estimation formulates a classification task and relies
on these encodings.

Image Encoding. Given a monocular RGB image I ∈ RH×W×3, visual encoder V E(·) (without
the final pooling layer) takes it as the input and extracts a C-dimensional feature map Fimg , i.e.,

Fimg = V E(I) ∈ RH×W×C , (1)
where H and W denote the height and width of I, and C the number of channels (or the hidden
dimension) of the features. Since the feature map Fimg preserves the spatial information as in the
original image, each pixel in Fimg can be mapped into distance categories based on its similarity
to semantic language tokens from TE(·). Note that each pixel in the feature map before pooling
captures regional semantic information, and the pooling operation aggregates local knowledge to
foster a global interpretation of the given image.

Text Encoding. The CLIP text encoder TE(·) projects similar semantic tokens to the neighborhood
of image features due to the contrastive pre-text task. Following DepthCLIP [35], we formulate depth
estimation as a distance classification task and utilize text prompts in the template of "This object is
[distance class]", where [distance class] contains K classes, i.e., ["giant", "extremely close", "close",
"not in distance", "a little remote", "far", "unseen"], corresponding to semantic tokens T.

Ftext = TE(T) ∈ RK×C . (2)

Depth Prediction. The depth prediction with CLIP is implemented by computing the similarity
score S ∈ RH×W×K , where each entry Sk

ij is the cosine similarity between the k-th predefined
semantic tokens Ftext

k ∈ RC and each pixel in the image features Fimg
ij ∈ RC , i.e.,

Sk
ij =

Ftext
k · Fimg

ij

∥Ftext
k ∥∥Fimg

ij ∥
. (3)
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Note that each predefined distance class (or depth bin) is assigned to a physical distance dk, e.g.,
"giant" and "close" corresponds to 1m and 2m, respectively. The depth estimation can then be
computed as the weighted sum of these depth bins with the probability as the weights, formulated as

D̂ij =

K∑
k=1

a(Fimg
ij ,Ftext

k ) ∗ dk where (4)

a(Fimg
ij ,Ftext

k ) =
eS

k
ij/t∑K

l=1 e
Sl
ij/t

,

and t is the temperature for the softmax function.

4 Exploring the Potential of Adapter Networks

In this section, we investigate whether incorporating an adapter network into CLIP can further
improve depth estimation performance. To the best of our knowledge, this is the first work to
study adapter networks for CLIP-based depth estimation. We first implement CLIP adapter [7] for
both visual and text domains. However, as there are no convolutional blocks in the CLIP adapter,
the capability of spatial reasoning may be limited. To address this, we propose a Coarse/Refined
Adapter based on the Depth_Eigen architecture [4], and a U-net-like Multi-Scale Adapter (MSA)
that also adopts a coarse-to-fine refinement design. Note that MSA can be further integrated with the
segmentation map generated by SAM [15].

4.1 CLIP Adapter [7]

CLIP adapter [7] is implemented as a lightweight MLP, typically a two-layer fully connected layer
with non-linear mapping, which provides an efficient modulation for adapting CLIP features. These
additional parameters are learned with the data from the downstream domains. We employ a CLIP
adapter for visual and language features respectively, as illustrated in Figure 2.

4.2 Coarse/Refined Adapter

Based on the architecture of depth_eigen [4], illustrated in Figure 3, we propose Coarse/Refined
adapter by substituting the coarse encoder (i.e., the blue box) with the CLIP visual encoder. Figure 4
presents the architecture of the Coarse/Refined adapter. The coarse adapter comprises two fully-
connected layers and maps the initial depth prediction generated by CLIP to coarse predictions. On
the other hand, in the refining layers, we merge the coarse prediction with the CNN features extracted
from the original RGB image by channel concatenation, which enables the model to recover the
information that CLIP does not capture. The concatenated features are then fed to two additional
convolutional layers to generate the refined prediction.

4.3 Multi-Scale Adapter (MSA)

While the Coarse/Refined Adapter is a reasonable design, the performance of the Coarse/Refined
adapter underperforms the original depth_eigen model. This raises doubts about the suitability of the
CLIP model for depth estimation tasks. To validate this hypothesis, we further propose a U-net-like
Multi-Scale Adapter (MSA) that can be integrated with the segmentation map generated by SAM.
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Figure 2: CLIP adapter [7].
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Figure 3: The structure of depth_eigen.

Figure 4: Coarse/Refine adapter

The architecture of the Multi-Scale Adapter is presented in Figure 5. The concept follows the idea of
U-Net [22] that combines feature maps from different scales. By incorporating low-level features, the
network can capture fine details and local information while leveraging high-level features for global
context and semantics. We integrate multi-scale visual features extracted from different layers of the
CLIP visual encoder.

In addition, motivated by the fact that the depth of the same object in the scene should have similar
depth, we leverage a powerful foundation model, Segment Anything (SAM) [15] to generate a
segmentation map for the original image and incorporate it to the convolutional encoders in MSA.
This provides prior information of object/part segmentations that can be helpful for the depth
reasoning of a scene.

4.4 Adapter Training

We study the problem under both self-supervised and supervised settings.

Self-supervised Learning (SSL). The self-supervised training follows typical techniques for self-
supervised depth estimation [20, 9]. This is achieved by minimizing the photometric error between
the target view It ∈ RH×W and the recovered target view Ît ∈ RH×W reconstructed by the inverse
warping of the source view Is ∈ RH×W with depth estimation D̂t ∈ RH×W and the camera
transformation matrix Tt→s = [R|t]. Based on the two-view geometry, the correspondence between
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Figure 5: Multi-Scale Adapter (MSA). CLIP [21] visual and text encoders take a RGB image and
semantic distance tokens as input respectively. The segmentation information of the image generated
by Segment Anything (SAM) [15] is integrated as a prior. The multi-scale features from CLIP and
the features of the segmentation map are fused with a U-net like architecture.

the source view and the target view is formulated as

P̃s = KTt→sDt(pt)K
−1Pt, (5)

where P denotes the homogeneous coordinate of p, and K the camera intrinsic matrix.

The photometric loss is defined as

Lpe = α
1− SSIM(It, Ît)

2
+ (1− α)∥It − Ît∥+ βLsmooth (6)

Lsmooth =
1

HW

∑
P∈It

|∂xD̂t(p)|e∥∂xIt(p)∥ + |∂yD̂t(p)|e∥∂yIt(p)∥, (7)

where α and β are hyperparameters, and SSIM(·) denotes the structural similarity loss [30] and
Lsmooth the smoothness loss.

While self-supervised training is widely adopted for depth datasets that have stereo image pairs or
consecutive frames, the NYU-Depth v2 [25] adopted in this project does not provide such information.
To enable SSL using this dataset, we implement a data augmentation pipeline, including rotation and
translation, to project the source frame Is ∈ RH×W to the target frame It ∈ RH×W , as illustrated in
Figure 6.

Source Image 𝐼! Target Image 𝐼"

Depth 𝐷"

Recovered Target Image #𝐼"

Data Augmentation

Camera transform 
[R|t]

Projection

𝐿!"#$#%&$'()

Figure 6: Pipeline of self-supervised learning on depth estimation.
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Supervised Learning. We adopt the typical loss functions for supervised depth estimation tasks,
including L1 loss and L2 loss for pixels defined as follows,

LL1 =
1

HW

H∑
i=1

W∑
j=1

|D̂ij −Dij |, (8)

LL2 =
1

HW

H∑
i=1

W∑
j=1

||D̂ij −Dij ||2 (9)

where D̂ij represents the predicted depth value at pixel i, j, and Dij is the corresponding ground
truth depth value.

5 Experiments

5.1 Datasets

NYU Depth v2 Dataset [25] The NYU Depth v2 dataset is a popular dataset of indoor scenes. It
comprises video sequences recorded by both the RGB and Depth cameras from the Microsoft Kinect.
The dataset includes various indoor scenes, such as offices, bedrooms, kitchens, and living rooms,
covering a wide range of objects, furniture, and room layouts. In addition to RGB color images, the
dataset provides dense depth maps obtained from the Kinect camera’s depth sensor. The depth maps
provide per-pixel depth measurements, allowing researchers to perform depth estimation and related
tasks.

The dataset follows a specific data format where RGB images are stored as jpeg files, providing the
visual appearance of the scenes. Dense depth maps, representing per-pixel depth measurements, are
saved as 16-bit png or tiff files. For a subset of the images, per-pixel semantic labels are available,
stored as separate image files using a color-coded encoding scheme. Camera calibration parameters,
which are crucial for tasks like depth map registration and camera pose estimation, are provided in
accompanying text or metadata files.

5.2 Implementation Details

We implement our model with the PyTorch framework. Our image and textual encoders employ the
pre-trained ResNet-50 [11] of CLIP [21]. In our study, we experimented with different hand-crafted
prompts and selected "This object is [distance class]" as the prompt format. We chose a set of seven
semantic distance classes: ["giant", "extremely close", "close", "not in distance", "a little remote",
"far", "unseen"]. Each class corresponds to a specific depth range, which is [1.00, 1.50, 2.00, 2.25,
2.50, 2.75, 3.00]. To ensure accurate and focused predictions, we set the temperature of the final
softmax function to 0.1. These choices provide a suitable framework for our main experiments,
capturing indoor depth effectively while maintaining semantic understanding.

5.3 Evaluation Metrics

For the evaluation metrics, we follow previous works [1, 35, 16, 23, 6] and compare our method
quantitatively with the other methods using Mean absolute relative error (rel), Root mean square
error (rmse), Absolute error in log space (rmselog), and Threshold accuracy (δ),

rel =
1

N

N∑
p=1

|yp − ŷp|
ŷp

(10)

rmse =

√√√√ 1

N

N∑
p=1

(yp − ŷp)2 (11)

rmselog =
1

N

N∑
p=1

|log10(yp)− log10(ŷp)| (12)
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δ = % of yp s.t. max(
yp
ŷp

,
ŷp
yp

) = δ < thr for thr = 1.25, 1.252, 1.253, (13)

where N is the number of samples, ŷp is the predicted depth, and yp is the ground truth depth.

5.4 Quantitative Results

Model pre-training supervision δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ rmselog ↓ rmse ↓
Lower Bound - - 0.140 0.297 0.471 1.327 0.323 2.934
vid2depth [16] KITTI [8] zero-shot 0.268 0.507 0.695 0.572 - 1.637
DepthCLIP [35] CLIP [21] zero-shot 0.394 0.683 0.851 0.388 0.156 1.167

Make3D [23] - depth 0.447 0.745 0.897 0.349 - 1.214
DORN [6] - depth 0.828 0.965 0.992 0.115 0.051 0.509

Coarse/Refined Adapter CLIP [21] depth 0.394 0.695 0.873 0.354 0.418 1.121
CLIP Adapter [7] CLIP [21] ssl 0.369 0.667 0.848 0.353 0.161 1.205
CLIP Adapter [7] CLIP [21] depth 0.411 0.704 0.869 0.376 0.149 1.109
Multi-scale Adapter CLIP [21] ssl 0.161 0.309 0.439 0.630 0.401 1.997
Multi-scale Adapter CLIP [21] depth 0.573 0.856 0.956 0.255 0.104 0.804

Table 1: Performance of Monocular Depth Estimation on NYU Depth v2 [25]. We compare our
methods, including CLIP adapter and Multi-scale adapter, with previous works under different
settings. The supervision column indicates the used loss functions, where ssl indicates self-supervised
learning, and depth indicates supervised learning.

In Table 1, we provide a comparison of our results with other monocular depth estimation methods,
including supervised, self-supervised, and zero-shot learning methods pretrained on KITTI [8] dataset
and CLIP [21] weights. The lower bound represents randomly generated predictions within the
0-10m depth range.

Among our proposed methods, we observe that the Multi-scale adapter using supervised learning
achieves the best performance. Additionally, it is evident that methods utilizing supervised learning
generally yield higher performance, while those employing self-supervised learning and zero-shot
learning exhibit lower performance.

Our proposed model using supervised learning slightly outperforms DepthCLIP, but it still falls
behind Make3D and DORN in terms of performance. This suggests that applying CLIP for depth
estimation tasks may not be as effective as these alternative methods.

5.5 Depth Prediction Visualization

Figure 7 presents the visualization of our best-performing depth predictions, the results obtained with
DepthCLIP [35], the ground truth, and the original RGB images. We can observe that our predictions
are much better than DepthCLIP, where the contours and boundaries of the sink, toilet, bed, desk,
chair, and table are more clear. The results are consistent with our hypothesis that adding object
segmentation information helps the model learn depth prediction since the depth values of the same
object are closer and change more smoothly.

5.6 Ablation Studies

CLIP as initial loss mode δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ rmselog ↓ rmse ↓
depth (L2) Coarse 0.618 0.891 0.969 0.228 0.283 0.871
depth (L2) Coarse+Refined 0.611 0.887 0.971 0.215 0.285 0.907

✓ depth (L2) Coarse 0.217 0.431 0.612 0.444 0.986 1.601
✓ depth (L2) Coarse+Refined 0.394 0.695 0.873 0.354 0.418 1.121

Table 2: Ablations on Coarse/Refined adapter.

We perform the following ablations on different adapters using different foundation model settings to
understand the influence of each component.

Ablations on Coarse/Refined Adapter To evaluate the effectiveness of the CLIP model, we
replaced the encoder of the depth_eigen with DepthCLIP. The results in Table Table 2 clearly
demonstrate that when DepthCLIP is used as the encoder, the performance is inferior to using the
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Figure 7: Visualization of our best-performing depth prediction results compared to the results of
DepthCLIP [35].

CLIP SAM loss δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ rmselog ↓ rmse ↓
ssl 0.101 0.205 0.312 0.690 0.511 2.207

✓ ssl 0.161 0.309 0.439 0.630 0.401 1.997
✓ ssl 0.385 0.678 0.850 0.386 0.158 1.177
✓ ✓ ssl 0.381 0.675 0.846 0.382 0.160 1.191

depth (L2) 0.456 0.768 0.920 0.308 0.130 0.975
✓ depth (L2) 0.426 0.732 0.898 0.338 0.140 1.050

✓ depth (L2) 0.385 0.674 0.846 0.398 0.159 1.184
✓ ✓ depth (L2) 0.384 0.671 0.844 0.394 0.160 1.191

depth (L1) 0.573 0.856 0.956 0.255 0.104 0.804
✓ depth (L1) 0.576 0.856 0.955 0.254 0.104 0.808

✓ depth (L1) 0.381 0.669 0.842 0.379 0.161 1.201
✓ ✓ depth (L1) 0.379 0.667 0.841 0.375 0.162 1.207

Table 3: Ablations on CLIP and SAM of Multi-scale adapter. The supervision column indicates
the used loss functions, where ssl indicates self-supervised learning, and depth indicates supervised
learning with L1 and L2 losses.

Image Adapter Text Adapter loss δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ rmselog ↓ rmse ↓
✓ ✓ ssl 0.369 0.667 0.848 0.353 0.161 1.205

✓ depth (L2) 0.373 0.672 0.850 0.355 0.160 1.197
✓ depth (L2) 0.386 0.685 0.856 0.369 0.156 1.165

✓ ✓ depth (L2) 0.411 0.704 0.869 0.376 0.149 1.109

Table 4: Ablations on image and text adapters of CLIP adapter.

original depth_eigen. This implies that the feature maps produced by CLIP may not provide sufficient
information to train a robust depth estimation model.

Ablations on CLIP and SAM To assess the efficacy of the foundation models CLIP and SAM,
we also conduct experiments as shown on Table 3. We can observe that under supervised settings,
the performance is better without using CLIP and SAM for both L1 and L2 loss, which concludes
CLIP and SAM are not very helpful for depth estimation tasks and even harm the performance if
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there are labeled data as guidance. On the other hand, the foundation models are still helpful for
self-supervised settings since there is no other guidance.

Ablations on Image and Text Adapters To validate the effectiveness of image and text adapters
of CLIP adapter, we conduct experiments as shown on Table 4. The results support the significance
of adapters in both the visual and text domains as we can find that the best performance is achieved
when utilizing both image and text adapters simultaneously as combining visual understanding with
textual knowledge is crucial for depth estimation tasks.

6 Conclusion

This project explores using large foundation models like CLIP and SAM for depth estimation in
computer vision. Depth estimation is crucial for 3D scene understanding, but the scarcity of depth
supervisions makes it challenging. We formulate depth estimation as a distance classification task,
leveraging CLIP’s semantic language tokens for initial depth prediction. We incorporate adapter
networks, including CLIP-Adapter, Coarse/Refined Adapter and Multi-Scale Adapter (MSA), to
refine CLIP’s predictions. We also investigate SAM’s efficacy by integrating its output into the multi-
scale adapter. Experiments using the NYU-Depth v2 Dataset reveal that current visual foundation
models still struggle with 2D-to-3D reasoning and face challenges in depth estimation.
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