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Introduction

As more applications using face for user authentication are available, it is very
important to develop algorithms for face anti-spoofing. The task of face anti-
spoofing is usually defined as a binary classification task, where data
sequences are attributed into two classes:

- Real: Face images which are directly captured by cameras.

- Fake: Face images which are remade from printed photos, replay-videos, etc.
The goal is to predict whether input images are Real or Fake. As there are
multiple ways to spoof the network, detecting these fake images is a
challenging task. In addition to the binary prediction, for the bonus task, we
also predict the type of the sequences, i.e. Print, Replay and Fake.

Highlights of this project:

- We adopt weighted Focal Loss [2] to address the data imbalance issue.

- We leverage sequential modeling to learn temporal information.

- We adopt feature pretraining to learn a more generalized feature.

Our model with all these components achieves satisfactory performance on
both Oulu-NPU (99.3%) and SiW (99.3%) dataset. On the bonus task, our
method achieves 76.3% accuracy on SiW dataset.

Dataset

Oulu-NPU: 11 frames are sampled from each video, which are captured by 6
phones, 3 acquisition conditions and 5 access types (Real, Printl, Print2,
Replayl, Replay2). For our main task, the binary classification task, we label
both Print and Replay as Fake.

SiW: 10 frames are sampled from each video.
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Architecture: Our model is composed of two modules, a CNN to extract

spatial features for input images and a RNN to learn temporal information.

1) CNN: We adopt MobileNetv2 with ImageNet pretrained weights as the
feature extractor, which is followed by a linear layer that converts the
feature dimension from 1280 to 512.

2) RNN: We choose a two-layer bidirectional LSTM as our RNN module,
since it can model sequential information bidirectionally. The final
prediction is produced from passing the last output of RNN through a
linear layer with Sigmoid and Softmax activation function for the main
task (Real/Fake) and the bonus task (Real/Print/Replay) respectively.

Learning: Although the whole network can be trained end-to-end, the back
propagation path for CNN could be very long, especially for the former layers
of CNN. As a result, we divide our training process into two stages:

1) Feature Pretraining: To learn a more generalized CNN feature, we
augment the data with the pipeline of random crop from 256x256 to
224x224, random horizontal flip and random rotation within 15 degrees.
We adopt image-based sampling across all the sequences and treat each
image as individual data for CNN input, which is trained for 30 epochs.

2) Sequential Modeling: In this stage, the CNN and RNN are trained end-to-
end for 90 epochs, where the CNN is initialized with the pretrained weight
from the first stage. We sample 8 sequences per batch, each sequence
consists of 11 image frames without using data augmentation. This stage
aims to learn the temporal information of the data.

Loss: The quantity of Real and Fake training data is highly imbalanced (1:4),
which may lead to imbalanced classification problem. To address this issue,
we adopt weighted Focal Loss [2] as our loss function:
FL(py) = —ac(1 - pe)'log(py),

where p; is the probability of the ground truth label, and y controls the shape
of the curve. The higher the value of y, the lower the loss for well-classified
examples. a; is the weight for Real class, which is 0.8 in this case to balance
the influence of the two classes, according to the ratio of Real and Fake data.
For the bonus task, we use 0.5/0.25/0.25 as the weight for Real/Print/Replay.
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Experiment

At first, we tried to reproduce a paper [1] which adopts RNN after CNN as its
model. However, they relied on the depth map and rPPG signals generated
from other face pretrained models to produce the prediction score, which is
prohibited for this project. We then try another depth estimation model that
is not trained with face data, but the result was not good. However, we
learned a lot from this practice. We found that the failed model simply
guesses all the images to be Fake, but still got an acceptable accuracy in
training data due to the class imbalance.

To verify that our model is trainable, we did data resampling to balance Real
and Fake data by using only % of Fake data such that the quantities of the two
classes are matched. We also simplified the model using a CNN with only 3
convolutional layers (Conv3) before the RNN, which reaches 77.0% AUC on
Oulu-NPU testing set and 65.6% AUC on SiW testing set.

However, under this setting, we can only train with part of the training data.
Instead, we searched for some reference to address the imbalanced issue
without abandoning training data. We then adopted weighted Focal Loss [2]
as our loss function, which highly improved the data imbalanced problem. The
model achieved 81.4% AUC on Oulu-NPU testing.

After deciding the loss, we experimented with different architectures for this
task, including different architectures of CNN and RNN. For CNN, we finally
chose MobileNetv2 as our feature extractor, since it is known as more
computationally efficient but still can reach a great performance. It achieves
98.9% AUC on Oulu-NPU testing set, which passed the baseline. We then
conducted experiment that replace the 1-directional LSTM with a
bidirectional LSTM (BiLSTM), and found that the model with the latter
performs better (99.4% AUC on Oulu-NPU testing), since it can propagate the
information bidirectionally.

Ablati on loss fi ion (w/ V2, 1-dir | LSTM)
Loss Val ACC Val AUC Oulu-NPU Test

BCELoss 95.1 99.8 98.7

weighted focal loss 94.4 100.0 98.9

Ablations on CNN (w/ weighted Focal Loss, 1-directional LSTM)

Architecture Val ACC Val AUC Oulu-NPU Test
Conv3 93.0 97.5 81.4
Alexnet 92.8 96.8 82.1
ResNet18 96.4 99.9 96.4
ResNet34 98.3 100.0 97.5
MobileNetv2 94.4 100.0 98.9

Ablations on RNN (w/ weighted Focal Loss, MobileNetV2)

LSTM Val ACC Val AUC Oulu-NPU Test
1-directional 94.4 100.0 98.9
bidirectional 98.6 99.9 99.4

When evaluating on SiW dataset, we encountered an issue that this model
cannot generalize well to the unseen dataset, where we only reach 87.2% AUC
on SiW testing. We thought that the back propagation path for CNN might be
too long so that the former layers of CNN are not learned properly. Therefore,
as described in the method section, we adopted feature pretraining with
data augmentation in the first stage and train the whole network end-to-
end in the second. This successfully improved the performance on unseen
dataset, which achieved 99.3% AUC on both Oulu-NPU and SiW testing set.
For the bonus task, we adopt the same method as the main task but change
the final classifier to a Softmax classifier, which achieves 98.0% accuracy on
Oulu-NPU validation set and 76.3% accuracy on SiW testing set.
Ablations on feature pretraining (w/ weighted Focal Loss, MobileNetV2, BiLSTM)

Feature Pretraining Val ACC Val AUC Oulu-NPU Test SiW Test
N 98.6 99.9 99.4 87.2
Y 97.9 99.9 99.3 99.3




