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Abstract

The Human Photoplethysmography (PPG) signal is a
simple and non-invasive optical technique used to detect
volumetric changes in blood in the peripheral circulation
and can reveal the condition of the cardiovascular sys-
tem in real-time. On the other hand, Blood Pressure (BP)
is the measurement of the force exerted on artery walls
and can be divided into several categories by their val-
ues, including Normotension (NT), Prehypertension (PHT),
Stage 1 and Stage 2 Hypertension (HT), and Hyperten-
sion crisis, leading to many diseases such as heart fail-
ure, stroke, and kidney failure. Measuring PPG signals and
real-time BP estimation is possible by using wearable de-
vices. Therefore, we propose a Shallow-PPGNet to pre-
dict whether the patient has blood pressure diseases based
on PPG signals, especially Prehypertension and Hyperten-
sion, to early diagnose and avoid potential diseases. In ad-
dition, we also implement the multi-class classification task
(NT/PHT/HT), which provides more detailed information to
both patients and doctors than binary classification. The
task is helpful in medical applications because the doctor
can give early treatment to the patients base on the high
true positive rate. Our model (Shallow-PPGNet) improves
over 10% accuracy than the state-of-the-art and achieves
71.13% and 77.22% accuracy in NT/PHT and NT/HT tasks
on PPG-BP [14] Database, and 80.2%, 89.5% on MIMIC-
II Dataset [13] respectively.

1. Introduction
Cardiovascular diseases (CVDs) have been a leading

cause of mortality worldwide, accounting for approxi-
mately 31% of all deaths globally [11]. Hypertension [20],
or high blood pressure, is a medical condition in which the
force of blood against the walls of arteries is consistently
too high, which is a significant risk factor for CVDs. Mon-
itoring blood pressure persistently then becomes essential
for early diagnosis and management of hypertension and the
prevention of CVDs [21]. Blood pressure can be detected
using a variety of methods, including traditional sphygmo-
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Figure 1. Overview. PPG signal is easily accessible without in-
vasion and thus is widely adopted in smartwatch settings. In this
project, we focus on detecting blood pressure diseases, i.e. hyper-
tension, with PPG signals.

manometers, automated blood pressure monitors, and pho-
toplethysmography (PPG) signals. While professional de-
vices in medical grade can provide more accurate measures
of blood pressure, they are more bulky, expensive, and not
easily portable [2]. Photoplethysmography (PPG) [2], an
optical sensing-based technique that measures changes in
blood volume in peripheral tissues, then becomes a popular
choice for continual monitoring of cardiovascular function,
due to its non-invasive, low-cost, and portable properties,
which is widely integrated into wearable devices like smart-
watches for monitoring health conditions in daily lives.

Owing to its importance for detecting CVDs, there are
research works on hypertension detection with PPG sig-
nals [21], which usually formulate the problem as a clas-
sification task, where each signal segment is classified into
Normotension (NT), Prehypertension (PHT), and Hyper-
tension (HT). While machine learning approaches have
been a powerful tool for solving complex tasks in the med-
ical domain, from image analysis [18] to disease diagno-
sis [12] and drug discovery [19], it is also applied to hyper-
tension detection and shown promising results. However,
the performance is still undesired and generalized poorly to
unseen data. We attribute the reasons to three challenges.
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Firstly, the data quality may be influenced by the noise sig-
nals during the measure, which can make it more difficult
to distinguish between normal and abnormal cases. Sec-
ondly, due to ethics and privacy concerns, data acquisition
is arduous for medical datasets, which results in insuffi-
cient labeled data for training the machine learning mod-
els. Thirdly, as NT and PHT signals appear more frequently
than HT signals in natural, the collected datasets [14] typ-
ically have significant data imbalance in the class distribu-
tions, leading to biased predictions toward more populated
classes such as NT and PHT.

In this paper, we aim at developing a machine-learning
algorithm for hypertension detection, with a focus on ad-
dressing the first two challenges. While not addressing the
third, we analyze the data distribution and point out the im-
balanced problem, which can inspire other future works.
To enhance the data quality, we employ a data preprocess-
ing procedure, consisting of a set of filters (e.g. median
filter, roll filter, Chebyshev filter) to remove noises, with-
out changing or distorting the original signal patterns. On
the other hand, to address the problem of the small dataset,
we propose a shallow network to analyze PPG signals and
extract relevant features for predicting blood pressure dis-
eases, namely Shallow-PPGNet, which leverages convolu-
tional kernels to discover the sequential patterns in the PPG
signals. Shallow-PPGNet consists of three convolutional
layers with varying kernel sizes, followed by two fully con-
nected layers. Specifically, the first convolutional layer per-
forms feature extraction at the lowest level from the input
signal, and the second and third convolutional layers extract
higher-level features. The output of the last convolutional
layer is flattened and fed into two fully connected layers for
classification. We adopt this shallow design for two reasons.
First, from the perspective of the curse of dimensionality,
as the number of features grows, the number of samples re-
quired for training increases exponentially. As the dataset
is not large-scale, we make the network as simple as possi-
ble for better estimation of the model parameters. Second,
a lightweight model has more potential to be deployed for
applications on edge devices like smartwatches, since the
resource required for running is less.

We evaluate our model using two publicly available
datasets of PPG signals [14, 13]. Without bells and whistles,
Shallow-PPGNet achieves superior accuracy than state-of-
the-art methods in predicting blood pressure diseases, with
the accuracy of 77.22% and 89.51% on PPG-BP [14] and
MIMIC-II [13] datasets respectively. Our results demon-
strate the potential of PPG signals as a valuable tool for
the early detection and monitoring of blood pressure dis-
eases. Furthermore, by leveraging the temporal information
present in PPG signals, our model can identify key features
indicative of hypertension, providing clinicians with valu-
able insights into the underlying mechanisms of the dis-

ease. Therefore, this work has significant implications for
improving the management of hypertension and reducing
the burden of CVDs worldwide.

In conclusion, our study provides evidence that PPG sig-
nals can effectively predict blood pressure diseases. Fur-
thermore, our shallow convolutional neural network model
demonstrates high accuracy in identifying relevant features
in PPG signals for predicting hypertension. This work high-
lights the potential of PPG signals as a valuable tool for
the early detection and monitoring of blood pressure dis-
eases. It can serve as a basis for future research in this area.
Ultimately, applying machine learning algorithms to PPG
signals has significant implications for improving the man-
agement of hypertension and reducing the burden of CVDs
worldwide.

2. Related Work
It has been years since scientists and researchers

started trying to detect CVDs through machine-learning ap-
proaches. In 2014, Golino et. al [10] proposed a classi-
fication model to detect hypertension and pre-hypertension
cases based on a decision tree and managed to achieve a
sensitivity of 58.38%, a specificity of 69.70%, and an AUC
of 0.688. In 2018, Lopez et al.[5] developed a regression
model and obtained a sensitivity of 77%, a specificity of
68%, and an AUC of 0.73. An example of a model that
makes use of a more complex machine learning technique
is one developed, again by Lopez et al. [6], based on ANN
with a multilayer perceptron architecture. This new model
managed to achieve a sensitivity of 40%, a specificity of
87%, a precision of 57.8%, and an AUC of 0.77.

While these models are based on different machine
learning techniques, they all perform their classifications
based on a variety of clinical and physiological data that
may be difficult to obtain. The decision tree model by
Golino et al. [10] requires features such as BMI, waist
and hip circumference (WC and HC, respectively), and
waist–hip ratio (WHR) as inputs. For Lopez’s models,
while they are able to achieve better performances, they are
fitted on data published by National Health and Nutrition
Examination Survey (or NHANES). The dataset contains
thousands of columns of data, including but not limited to
the subject’s physical indices such as BMI, his/her dietary
habits, smoking history, drug use, etc. Some of the features
are extremely difficult to be measured effectively in a labo-
ratory or a clinic setting, so the only way to have access to
them is through a questionnaire. As a result, these data may
be inaccurate due to reasons like personal biases. These
factors prohibited the models from being used widely and
effectively.

In recent years, with the development of digital wear-
able devices such as smartwatches, PPG signal has become
much more accessible. As a result, many researchers de-
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cided to use it to classify CVDs. In 2019, Luo et al. [17]
developed a CNN model for hypertension prediction. The
model is trained over a well-known dataset called Multipa-
rameter Intelligent Monitoring in Intensive Care(MIMIC)
II [13]. Luo et al. also compared their proposed model
with models using other machine learning techniques such
as KNN, J48, Random Forest, SMO, Native Bayes, and Lo-
gistics, and they claimed that results from CNN gave the
best performance. In 2020, Tjahjadi et al. [9] proposed
a model that extracts information from PPG signals using
a short-time Fourier transform (STFT) and then uses the
resulting features to train a bidirectional long short-term
memory (BLSTM) network. Tjahjadi et al. claimed that
their process required less time and achieved better perfor-
mance than a normal CNN approach.

In 2018, a short-recorded PPG dataset collected for the
purpose of blood pressure monitoring was published in
China [14]. This dataset contains 657 data segments from
219 subjects, and each data segment is 2.1 seconds. Four
years later, Gupta et al. [7] proposed a new CNN-LSTM
model based on this dataset. Their model uses the given
PPG segments to classify three different cases: normoten-
sion (NT), prehypertension (PHT), and hypertension (HT).
In their article, the authors claim that they achieved 61.07%
and 67.76% accuracy in binary classifications of NT vs PHT
and NT vs HT.

3. Preliminaries
In this section, we give a brief review of neural networks

and convolutional neural networks.

3.1. Neural Networks

The Neural Network (NN) is a model that imitates the
neurons in the biological brain. Each neuron is comprised
of a set of parameters that can be learned through mathe-
matical methods. In a neural network, there can be mul-
tiple neuron layers, each is composed of a set of neurons,
e.g. input layer, hidden layers, and the output layer. Neu-
rons between layers are interconnected, and the neurons at
the later layers can be stimulated by the neurons from the
former layers. The network’s input layer can be fed with
various kinds of signals, such as biological signals, image
signals, and audio signals. Therefore, it can be applied to
several domains, including biomedical technology, image
processing, computer vision, natural language processing,
acoustic, communications engineering, and so on.

The weights and the bias that reside in each neuron,
which indicates the degree they contribute to the output, are
the parameters that the NN should learn. These parameters
define a mathematical model as a function of the mapping
from the input to the output. Since the function is differen-
tiable, the values of the model parameters can be estimated
with algorithms like gradient descent to find the local min-

imum of the cost function, which can be estimated with a
number of input-output pairs.

3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become
increasingly popular in recent years due to their effective-
ness in various applications, including image and speech
recognition, natural language processing, and time-series
analysis. One of the critical advantages of CNNs is their
ability to capture temporal or spatial patterns in the in-
put data by exploiting the local connectivity pattern, which
means that each neuron in the network is only connected to
a small region of the input signal, allowing the network to
detect local patterns or features at different time scales and
is particularly useful for analyzing time-series data, such
as photoplethysmography (PPG) or electroencephalography
(EEG) signals, which contain complex temporal patterns
that can be difficult to capture using traditional neural net-
works.

Furthermore, the most significant difference between
CNNs and NNs is that the weight sharing in CNNs allows
the same set of learned weights to be applied to different
parts of the input signal. As a result, it reduces the number
of parameters that need to be learned, which is important
for applications with limited training data.

In addition to local connectivity and weight sharing,
CNNs also use pooling layers to reduce the dimensional-
ity of the output from each convolutional layer. Pooling
layers can extract invariant features from the input signal,
which can be helpful when working with noisy or variable
data, and also reduce overfitting by combining multiple fea-
ture maps into a single output. CNNs typically have mul-
tiple layers, with each layer learning increasingly complex
features. The hierarchical feature extraction allows the net-
work to learn high-level representations of the input signal,
which can be used for tasks such as classification or regres-
sion.

4. Shallow-PPGNet
In this section, we formulate the problem of hypertension

detection, and introduce the data preprocessing procedure
and the proposed network design.

4.1. Problem Formulation

PPG signals are 1-d serial data. To perform hyperten-
sion detection, a typical way is to apply a sliding window
truncating multiple frames with the same window length for
classification, i.e. {x1,x2, ...,xN}, where xi ∈ RL, L and
N are the window length and number of segments respec-
tively. Following prior works [7], each frame is viewed as
an independent sample, and the model aims at generating a
class label for each input PPG segment. In this paper, we
study the problem with three tasks:
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Figure 2. Model Architecture. We first preprocess the data with the steps described in subsection 4.2. The processed data is then fed into
a convolutional neural network for feature extraction and classification. The network is composed of three convolutional layers as defined
in Table 1.

• NT/PHT classification

• NT/HT classification

• NT/PHT/HT classification

where NT/PHT/HT is the most difficult task, as it required
classifying the samples into three categories instead of two.
NT/PHT is the second because it is a fine-grained classifi-
cation task, where the difference between NT/PHT signals
are minor than NT/HT signals.

4.2. Data Preprocessing

In 2016 IEEE International Conference on Consumer
Electronics (ICCE), Dahee Ban and Sungoh Kwon pointed
out that there are two major sources of noises in PPG sig-
nals, namely movement noise and high-frequency noise [3].
The common causes of high-frequency noise are thermal
noise and electromagnetic interference in cables. On the
other hand, voluntary or involuntary movements of a subject
during the process of signal recording can lead to movement
noises. As a result, it is necessary to apply data preprocess-
ing first so that the signals will be more accurate and thus
allow for better training results.

In our approach, we first apply a median filter with ker-
nel size 23 to remove noises in the signal, followed by a roll
filter with the same kernel size. This initial step allows us to
replace the data points that are locally too high or too low
in frequency with local medians and means. The underlying
assumption behind this step is that local data values that are
abnormally too high or low in frequency result from noises,
and that the local noise is Gaussian-distributed with mean
0. Afterward, we apply a 4th-order Chebyshev filter with
a cutoff frequency of 25 and a minimum attenuation stop-
band of 10 [15], which is designed to remove any unwanted
high-frequency components from the signal. While Liang et
al. [15] alleged that for the given PPG-BP dataset the best
filtering approach is a backward-forward Chebyshev filter,

we compare the performance of a normal Chebyshev filter
and a backward-forward Chebyshev filter and find that the
difference is almost negligible. Therefore, we decided to
not apply a backward-forward filter to further complicate
the problem. As we can see from the graphs Figure 3, af-
ter using the combination of these filters, we can effectively
remove noise and improve the quality of the signal without
changing or distorting the original signal patterns, which is
important for many applications in signal processing and
analysis.

Figure 3. Data Preprocessing. The original signal (left) is passed
through a set of preprocessing steps (e.g. median filter, roll filter,
Chebyshev filter) to remove noises and enhance smoothness. The
preprocessed signal is shown on the right.

4.3. Model Architecture

To address the challenges posed by the small dataset,
from the perspective of curse of dimensionality, it is im-
portant to minimize the number of trainable parameters to
avoid overfitting and ensure the model parameters are es-
timated with sufficient data. To achieve this, we design a
shallow convolutional neural network (CNN) with a spe-
cific architecture, which consists of 3 convolution layers, 2
pooling layers, and 2 fully-connected layers, as shown in
Table 1. As the data frame are 1-d series, we employ 1D
convolutional kernel with varying lengths in different layers
to capture the sequential patterns in the PPG signals. While
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Layer Type Kernel Size Input Channel Output Channel Trainable Parameters
1 Conv1d 30 1 64 2015
2 Conv1d 15 64 64 61504
- MaxPool1d 7 64 64 0
3 Conv1d 5 64 128 41088
- MaxPool1d 7 128 128 0
4 Linear - - - -
5 Linear - - - -

Table 1. The model architecutre of the proposed (Shallow-
PPGNet). architecture.

the former layers of the CNN extract low-level features, the
convolutions in later layers extract more high-level features.
In addition to convolutional layers, we adopt max-pooling
layers to reduce the data dimension and prevent overfitting
and linear layers with non-linear activations to map the ex-
tracted features to the number of output categories. The
network prediction can be formulated as

p = Softmax(Shallow-PPGNet(x)) (1)
ŷ = argmax

k
pk (2)

where p denotes the output class probability. By using this
architecture, we can effectively reduce the number of pa-
rameters in the network while still achieving high accuracy
in our predictions, and leverage the power of convolutional
neural networks while mitigating the risks associated with
overfitting in the small dataset size.

4.4. Learning

We adopt a Softmax layer at the end of the linear layer
to produce the classification probability for both two-class
(NT/PHT and NT/HT) and three-class (NT/PHT/HT) clas-
sification tasks. The network is optimized with a cross-
entropy loss, i.e.

lce = −
C∑

k=1

yk logpk (3)

Lce =
1

N

N∑
i=1

lce(xi, yi) (4)

where C is the number of classes. Note that C = 2
for NT/PHT and NT/HT classification, and C = 3 for
NT/PHT/HT classification.

5. Experiments
5.1. Datasets

We validate Shallow-PPGNet with two different datasets
[13, 14], as introduced in the following.

PPG-BP Database [14] is collected from Guilins Peo-
ple’s Hospital in China. The dataset contains 219 sub-
jects ranging in age from 20 to 89, including their hyper-
tension and diabetes histories, weight, height, age, dias-
tolic blood pressure, systolic blood pressure, BMI, and heart

rate. There are 657 data segments from 219 subjects, and
the blood pressure and 3 PPG segments from each subject,
shown in Figure 5, also contained the data quality of each
segment. The Sampling rate is 1kHz, so we have 2100 sam-
pling points for each 2.1-second segment.

After choosing high-quality data with positive quality
scores, we use 648 data segments, which is a very small
dataset size to train deep learning models. Afterward, we
split the dataset into training, validation, and testing sets
with the proportion [0.64, 0.16, 0.2], respectively, and the
number of hypertension samples is less than those of the
other two classes, as shown in Figure 6.

MIMIC-II Dataset [13] is a publicly available elec-
tronic health record database that provides a wealth of in-
formation about patients admitted to the intensive care units
(ICUs) of the Beth Israel Deaconess Medical Center in
Boston, Massachusetts, USA. The dataset contains over
20000 recording periods of PPG signals with ABP rang-
ing from seconds to hours. The data was collected using
electronic medical record systems, which allowed for de-
tailed and accurate documentation of clinical variables. The
Sampling rate is 125Hz, and we segment each signal into 5
seconds.

In MIMIC-II dataset, ABP signals recorded simultane-
ously with PPG signals are used as a ground truth value for
hypertension classification. We implement Elgendi et al.’s
peak detection approach [4] for each segment and obtain the
ground truth SBP values from ABP. According to the stan-
dards of the US National Institutes of Health, Normal, Pre-
hypertension, and Hypertension are labeled if the calculated
SBP values < 120mmHg, 120-140mmHg, > 140mmHg re-
spectively.

Figure 4. Data statistics of the PPG-BP dataset from [14].

Figure 5. The measurement protocol from [14].
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Model Tasks Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score (%)

VGG16 [22] NT/PHT 55.67 96.15 8.89 54.95 69.93
NT/HT 62.03 46.67 71.43 50.00 48.28

ResNet18 [8] NT/PHT 62.89 92.59 25.58 60.98 73.53
NT/HT 65.82 33.33 85.71 58.82 42.55

CNN-LSTM [7] NT/PHT 61.07 55.90 64.40 50.77 53.21
NT/HT 67.76 68.40 66.60 75.76 71.89

Shallow-PPGNet (Ours) NT/PHT 71.13 94.64 39.02 67.95 79.10
NT/HT 77.22 67.86 82.35 67.86 67.86

Table 2. Comparisons to different CNN-based architectures on the PPG-BP [14] dataset. Models are evaluated with two tasks, NT/PHT
classification and NT/HT classification.

Figure 6. Class distributions in training, validation, and testing set.

5.2. Evaluation Metrics

We evaluate the models with 5 different metrics: accu-
racy, sensitivity, specificity, precision, and F1-score. These
metrics are defined with different combinations of true pos-
itive rate (TP), true negative rate (TN), false positive rate
(FP), and false negative rate (FN), which are defined as fol-
lows,

TPk =

∑N
i 1(yi = k, ŷi = k)∑N

i 1(yi = k)

TNk =

∑N
i 1(yi ̸= k, ŷi ̸= k)∑N

i 1(yi ̸= k)

FPk =

∑N
i 1(yi ̸= k, ŷi = k)∑N

i 1(yi ̸= k)

FNk =

∑N
i 1(yi = k, ŷi ̸= k)∑N

i 1(yi = k)

where (·)k denotes the metric for a class k in C classes.

Accuracy

Accuracy =
1

C

C∑
k=1

TPk + TNk

TPk + TNk + FPk + FNk

Accuracy is the most general evaluation metric, and it works
if false positives (FP) and false negatives (FN) have similar
costs. However, if the cost of FP and FN are very differ-
ent, it is better to consider both Sensitivity and Specificity.
In our task, the data is a little imbalanced since we have
less HT data as mentioned above, which is a typical case in
medical cases. Therefore, a model can just predict all re-
sults as NT and get high accuracy, but it is not useful for the
task. Therefore, we have to consider the Sensitivity, Speci-
ficity, Precision, and F1-score at the same time to evaluate
the model properly.

Sensitivity

Sensitivity =
1

C

C∑
k=1

TPk

TPk + FNk

Sensitivity, also known as true positive rate, measures the
proportion of actual positive instances that are correctly
identified by the model. It reflects the ability of the model to
correctly identify instances that belong to the positive class.

Specificity

Specificity =
1

C

C∑
k=1

TNk

TNk + FPk

Specificity, also known as true negative rate, measures the
proportion of actual negative instances that are correctly
identified by the model. It reflects the ability of the model to
correctly identify instances that belong to the negative class.

Precision Precision is important in situations where the
cost of false positives is high, especially in medical diagno-
sis. In these scenarios, it is crucial to minimize the number
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of false positives to avoid misdiagnosis or incorrect accu-
sations of fraud. In addition, precision can provide a better
understanding of the model performance when the class dis-
tribution is imbalanced.

Precision =
1

C

C∑
k=1

TPk

TPk + FPk

F1-Score F1-score is a weighted average of precision and
sensitivity. It is especially suitable for evaluating imbal-
anced datasets because it considers both precision and sen-
sitivity simultaneously.

F1-Score =
2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

5.3. Ablation Studies

In this section, we conduct experiments for three classi-
fication tasks (i.e. NT/PHT, NT/HT, and NT/PHT/HT clas-
sification) with two different datasets. We also compare the
proposed model with other model architectures as discuss
the difference.

Comparisons to Random Forest. Since the PPG-BP
Database [14] is very small, we implement a random for-
est classifier as the very first baseline model, which is a tra-
ditional machine learning method leveraging multiple deci-
sion trees with boostraping and bagging strategies. We ab-
late different hyperparameter choices (e.g. number of deci-
sion trees in the random forest), and find that 15-20 estima-
tors give optimal results. However, even the best model only
provides 41% accuracy, recall, and F1-score. For a more
detailed analysis, we plot the confusion matrix as shown in
Figure 7 (left). From the plot, we can observe that the model
has about 40% probability to classify a sample into prehy-
pertension no matter what the ground truth label is, which
means the model does not really learn the class. By contrast,
the proposed Shallow-PPGNet is a deep learning-based ap-
proach, which achieves superior performance on the same
dataset as shown in the confusion matrix in Figure 7 (right).
The confusion matrix in this case is way better than the one
for the random forest model, as we can clearly see the diag-
onal of the matrix. This is reasonable because the random
forest baseline does not model the sequential information of
the data frame, while our model (Shallow-PPGNet) lever-
ages convolutional kernels to capture the patterns in time
series, leading to superior performance.

Comparison to Different CNN-based Architectures. In
this section, we further ablate different CNN-based archi-
tectures, including VGG16 [22] and ResNet [8], and the
current state-of-the-art approach, i.e. CNN-LSTM [7], that

adopts a combination of CNN and LSTM (long-short-term-
memory). LSTM is a type of recurrent neural network
(RNN), which is widely used for learning time-series data.
Note that for VGG16 and ResNet, we replace the 2D convo-
lutions with 1D convolutions but keep the kernel sizes and
the number of channels the same. As we can see in Table 2,
the proposed Shallow-PPGNet outperforms other model ar-
chitectures, where Shallow-PPGNet achieves 71.13% and
77.22% accuracy in NT/PHT and NT/HT classification
tasks on PPG-BP dataset [14] respectively. Compared to
the CNN-LSTM model, we improve about 10% accuracy,
and also improve overall performance such as sensitivity,
precision, and F1-scores. In addition, we achieve 94.64%
and 67.86% sensitivity for each classification task, which is
helpful in medical applications because the doctor can get a
high true positive rate to give early treatment to the patient.
Besides, the precision and F1-score of Shallow-PPGNet are
also the highest compared to other models in the NT/PHT
classification task. These experiments show that a shallow
network can have more power than deeper and more com-
plex model architectures when solving a medical task which
does not have a large number of training samples.

Experiments with Another Dataset. Despite the high
performance of the proposed Shallow-PPGNet on the PPG-
BP dataset, we further validate its power with MIMIC-
II dataset [13]. Similar to the performance on PPG-BP,
Shallow-PPGNet achieves high accuracy on all the tasks
and has uniformly good performance in all the metrics, as
shown in Table 3. In the confusion matrix plot in Figure 8,
we can also observe that the diagonal of the matrix is very
clear, which means that there is little confusion among the
classes.

Figure 7. The confusion matrix of the random forest model (left)
and the proposed Shallow-PPGNet (right) on the PPG-BP dataset.
The accuracy of Shallow-PPGNet in the NT/PHT/HT classifica-
tion task is 44.19%.

5.4. Transfer Learning to Diabetes Detection

In this section, we implement transfer learning between
hypertension and diabetes. Transfer learning is a machine
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Figure 8. The confusion matrix for Our Model (Shallow-PPGNet)
on MIMIC-II Dataset.

Tasks NT/PHT NT/HT NT/PHT/HT

Accuracy (%) 80.27 89.51 72.86
Sensitivity (%) 81.54 90.73 -
Specificity (%) 79.03 88.04 -
Precision (%) 79.08 90.10 -
F1 score (%) 80.30 90.41 -

Table 3. Results of our model (Shallow-PPGNet) on the MIMIC-
II dataset [13].

Approach Training from scratch Transfer learning

Accuracy (%) 80.62 83.46
Sensitivity (%) 0.0 27.78
Specificity (%) 98.11 92.66
Precision (%) 0.0 38.46

NPV (%) 81.89 88.60
F1-score (%) - 32.26

Table 4. Results of our model (Shallow-PPGNet) training from
scratch and transferring learning from blood pressure disease la-
bels to diabetes labels.

learning technique that enables a model to apply the knowl-
edge gained from one task to another. It has become in-
creasingly popular in various domains by leveraging pre-
existing knowledge and saving both time and computational
resources [1]. Especially in medical fields, since medi-
cal data can be difficult to obtain due to privacy concerns,
regulations, and the time-consuming nature of data collec-
tion and labeling, transfer learning is beneficial when work-
ing with small medical datasets [1]. Diabetes is a chronic
metabolic condition characterized by high blood sugar lev-
els, which increases the risk of developing various car-
diovascular diseases including hypertension. We assessed
whether transfer learning improves the performance of the
model in diabetes by fine-tuning the model pre-trained on
the hypertension task. We utilized Shallow-PPGNet pre-
trained on MIMIC-II Dataset, which has shown the highest
performance on hypertension (NT/HT) classification, and
fine-tuned the model with diabetes classes from the PPG-BP
Database. Our experimental results show that we can im-

prove the overall performance of diabetes prediction via ap-
plying transfer learning on our shallow-PPGNet. As shown
in Table 4, we can achieve 83.46% accuracy which is 2.84%
higher than the model trained from the scratch. Other cri-
teria including sensitivity, precision, and F1-score are also
significantly increased for predicting diabetes of patients
despite the large data imbalance on normal versus diabetes.

5.5. Implementation Details

The data preprocessing procedure is described in sub-
section 4.2. We train our model for 180 epochs, with batch
size 10 and learning rate 0.01. The network is optimized
with SGD optimizer with momentum 0.9 and weight decay
0.0005. The proposed network was implemented with Py-
Torch, and the random forest baseline was trained with the
implementation in scikit-learn package.

6. Conclusion
In this paper, we explore the task of hypertension de-

tection with PPG signals, which is formulated as a classi-
fication task. We propose a novel architecture, Shallow-
PPGNet, which is shallow but effective as we leverage con-
volutional kernels to capture the temporal information in the
PPG signals. As medical datasets are small, to overcome the
curse of dimensionality, we adopt a shallow model design
that can better estimate the model parameters with a lim-
ited number of samples. We evaluate the model with 3 dif-
ferent tasks, including NT/PHT, NT/HT, and NT/PHT/HT
classification, on two different datasets, PPG-BP database
and MIMIC-II dataset. The experiments show that the
proposed Shallow-PPGNet outperforms standard machine
learning models like random forest and other deep learn-
ing architectures, including the state-of-the-art CNN-LSTM
model. We also transfer the knowledge from the hyperten-
sion detection to the diabetes detection task and show that
Shallow-PPGNet can generalize to other medical tasks as
well. These experiments suggest that a shallow network
can be more powerful for medical tasks than more com-
plex models. In conclusion, our approach has significant
potential for use in medical applications, allowing doctors
to provide early treatment to patients with blood pressure
diseases.

7. Future Works
As the challenges discussed in the introduction section,

one can improve the performance in this task by integrat-
ing training algorithms that compensate for data imbal-
ance. For example, the model can be trained with Focal
loss [16]. In addition, we can train the model on MIMIC-II
dataset [13], which is a larger dataset, and adapt it to PPG-
BP Database [14], which is a very small dataset, to validate
whether our model works for domain adaptation.
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ficial neural network approach for predicting hypertension
using nhanes data. Scientific Report, 10, 2020.

[7] Ketan Gupta, Nasmin Jiwani, and Neda Afreen. Blood pres-
sure detection using cnn-lstm model. In 2022 IEEE 11th In-
ternational Conference on Communication Systems and Net-
work Technologies (CSNT), pages 262–366, 2022.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Hendri Murfi Hendrana Tjahjadi, Kalamullah Ramli. Non-
invasive classification of blood pressure based on photo-
plethysmography signals using bidirectional long short-term
memory and time-frequency analysis. IEEE Access, 8, 2020.

[10] Stenio Fernando Pimentel Duarte Cristiano Mauro Assis
Gomes Telma de Jesus Soares Luciana Araujo dos Reis Hud-
son Fernandes Golino, Liliany Souza de Brito Amaral and
Joselito Santos. Predicting increased blood pressure using
machine learning. Journel of Obesity, 2014.

[11] Philip Joseph, Vellappillil Raman Kutty, Viswanathan Mo-
han, Rajesh Kumar, Prem Mony, Krishnapillai Vijayakumar,
Shofiqul Islam, Romaina Iqbal, Khawar Kazmi, Omar Rah-
man, et al. Cardiovascular disease, mortality, and their as-
sociations with modifiable risk factors in a multi-national
south asia cohort: a pure substudy. European Heart Jour-
nal, 43(30):2831–2840, 2022.

[12] Yogesh Kumar, Apeksha Koul, Ruchi Singla, and Muham-
mad Fazal Ijaz. Artificial intelligence in disease diagnosis:
a systematic literature review, synthesizing framework and
future research agenda. Journal of Ambient Intelligence and
Humanized Computing, pages 1–28, 2022.

[13] Joon Lee, Daniel J Scott, Mauricio Villarroel, Gari D Clif-
ford, Mohammed Saeed, and Roger G Mark. Open-access
mimic-ii database for intensive care research. In 2011 An-
nual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 8315–8318. IEEE,
2011.

[14] Yongbo Liang, Zhencheng Chen, Guiyong Liu, and Mo-
hamed Elgendi. A new, short-recorded photoplethysmogram
dataset for blood pressure monitoring in china. Scientific
data, 5(1):1–7, 2018.

[15] Yongbo Liang, Mohamed Elgendi, Zhencheng Chen, and
Rabab Ward. An optimal filter for short photoplethysmo-
gram signals. Scientific data, 5(1):1–12, 2018.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[17] Yue Luo; Yang Li; Yao Lu; Shuisheng Lin; Xinchun Liu.
The prediction of hypertension based on convolution neural
network. 2019.

[18] Andreas S Panayides, Amir Amini, Nenad D Filipovic,
Ashish Sharma, Sotirios A Tsaftaris, Alistair Young, David
Foran, Nhan Do, Spyretta Golemati, Tahsin Kurc, et al. Ai in
medical imaging informatics: current challenges and future
directions. IEEE journal of biomedical and health informat-
ics, 24(7):1837–1857, 2020.

[19] Debleena Paul, Gaurav Sanap, Snehal Shenoy, Dnyaneshwar
Kalyane, Kiran Kalia, and Rakesh K Tekade. Artificial intel-
ligence in drug discovery and development. Drug discovery
today, 26(1):80, 2021.

[20] Mustafa Sameer and Bharat Gupta. Beta band as a biomarker
for classification between interictal and ictal states of epilep-
tical patients. In 2020 7th International Conference on Sig-
nal Processing and Integrated Networks (SPIN), pages 567–
570, 2020.

[21] Muhammad Shabaan, Kaleem Arshid, Muhammad Yaqub,
Feng Jinchao, M Sultan Zia, Giridhar Reddy Bojja, Muaz-
zam Iftikhar, Usman Ghani, Loknath Sai Ambati, and
Rizwan Munir. Survey: smartphone-based assessment of
cardiovascular diseases using ecg and ppg analysis. BMC
medical informatics and decision making, 20:1–16, 2020.

[22] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

9


